skip to main content


Search for: All records

Creators/Authors contains: "Wollaeger, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Core-collapse supernova explosions play a wide role in astrophysics by producing compact remnants (neutron stars or black holes) and the synthesis and injection of many heavy elements into their host galaxy. Because they are produced in some of the most extreme conditions in the universe, they can also probe physics in extreme conditions (matter at nuclear densities and extreme temperatures and magnetic fields). To quantify the impact of supernovae on both fundamental physics and our understanding of the universe, we must leverage a broad set of observables of this engine. In this paper, we study a subset of these probes using a suite of one-dimensional, parameterized mixing models: ejecta remnants from supernovae, ultraviolet, optical and infrared light curves, and transient gamma-ray emission. We review the other diagnostics and show how the different probes tie together to provide a more clear picture of the supernova engine. Join us in improving and evolving this document through active community engagement. Instructions are provided at this link:https://github.com/clfryer/MM-SNe.

     
    more » « less
  2. Abstract Gamma-ray bursts (GRBs) are flashes of high-energy radiation arising from energetic cosmic explosions. Bursts of long (greater than two seconds) duration are produced by the core-collapse of massive stars 1 , and those of short (less than two seconds) duration by the merger of compact objects, such as two neutron stars 2 . A third class of events with hybrid high-energy properties was identified 3 , but never conclusively linked to a stellar progenitor. The lack of bright supernovae rules out typical core-collapse explosions 4–6 , but their distance scales prevent sensitive searches for direct signatures of a progenitor system. Only tentative evidence for a kilonova has been presented 7,8 . Here we report observations of the exceptionally bright GRB 211211A, which classify it as a hybrid event and constrain its distance scale to only 346 megaparsecs. Our measurements indicate that its lower-energy (from ultraviolet to near-infrared) counterpart is powered by a luminous (approximately 10 42  erg per second) kilonova possibly formed in the ejecta of a compact object merger. 
    more » « less